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Electrostatics: Electric Charge; Conductors and Insulators; Coulomb’s Law; 
Electric Fields due to a Point Charge and an Electric Dipole; Electric Field due to 
a Charge Distribution; Electric Dipole in an Electric Field; Electric Flux; Gauss’ 
Law and its Applications in Planar; Spherical and Cylindrical Symmetry  
 

 

Electric Field due to Many (n) Point Charges 

 

We can quickly find the net, or resultant, electric field due to more than one point charge. If we 

place a positive test charge q0 near n point charges q1, q2, . . . , qn, then the total net force from 

the n point charges acting on the test charge is 

 

 

Let are the „n‟ point charges which is at distances respectively 

 

The net electric field at the position of the test charge is 

 

 

Let q1,qq2,q3,………….,qn are the n point charges which is at distance r1,r,.r3,……………, rn. 

 

We want to find out the expression of electric field intensity due to assembly of n point charges 

at field point P. 

 

Then, the total electric field intensity due to assembly of „n‟ point charges will be 

 

 

E = E1 + E2 +……….+ En 

  

E1 = Electric Field Intensity at a Field Point due to Point Charge q1 = 1
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E3 = Electric Field Intensity at a Field Point due to Point Charge q3 = 
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So we get,  
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This equation gives the total electric field intensity due to assembly of „n‟ point charges at a 

specific field point. 
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Electric Field due to a Dipole 
 

Two charge particles of magnitude q but of opposite sign, separated by a distance d called 

electric dipole. Let us find the electric field due to the dipole a point P, a distance z from the 

midpoint of the dipole and on the axis through the particles, which is called the dipole axis. 

 

The electric field at point P, due to the separate charges are the fields 

E (+) and E(-) that make up the dipole—must lie along the dipole 

axis, which we have taken to be a z axis.  

The total electric field intensity at point P due to the charges +q and –

q is given by the expression. 

E = E(+) – E(-) 

 

 

 

 

After forming a common denominator and multiplying its terms, we 

come to 

 

 

 

We are usually interested in the electrical effect of a dipole only at distances that are large 

compared with the dimensions of the dipole, that is, at distances such that z˃˃ d.  

At such large distances,  d/2z ˂˂ 1   

Thus, neglect the d/2z term in the denominator, which leaves us with 
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The product qd, known as the electric dipole moment  of the dipole, unit of it is the coulomb-

meter 

 
 

The direction of dipole moment is taken to be from the negative to the positive end of the dipole. 

We can use the direction of to specify the orientation of a dipole.  

 

 

 

 

 

 

 

 

 

 

 

 

 

If we measure the electric field of a dipole only at distant points, we can never find q and d 

separately; instead, we can find only their product. 

 

The field at distant points would be unchanged if, for example, q were doubled and d 

simultaneously halved. 

 

The direction of E for distant points on the dipole axis is always the direction of the dipole 

moment vector.  

If you double the distance of a point from a dipole, the electric field at the point drops by a factor 

of 8 (1/z
3
). 
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If you double the distance from a single point charge, the electric field drops only by a factor of 4 

(1/r
2
). 

Thus the electric field of a dipole decreases more rapidly with distance than does the electric 

field of a single charge. The physical reason for this rapid decrease in electric field for a dipole is 

that from distant points a dipole looks like two equal but opposite charges that almost—but not 

quite—coincide. Thus, their electric fields at distant points almost—but not quite—cancel each 

other. 
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A Dipole in an Electric Field  

Electric dipole moment of an electric dipole to be a vector that points from the 

negative to the positive end of the dipole.  

As you will see, the behavior of a dipole in a uniform external electric field can be 

described completely in terms of the two vectors E and P, with no need of any 

details about the dipole’s structure. 

 

 

 

 

 

 

 

 

 

 

 

 

In a water molecule, the two hydrogen atoms and the oxygen atom do not lie on a 

straight line but form an angle of about 105°, as shown in Fig. above. Therefore, 

the molecule has a definite “oxygen side” and “hydrogen side.” 

A molecule of water (H2O) is an electric dipole Fig.  There the black dots 

represent the oxygen nucleus (having eight protons) and the two hydrogen nuclei 

(having one proton each). The colored enclosed areas represent the regions in 

which electrons can be located around the nuclei. 
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Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen 

nucleus than to the hydrogen nuclei.  

This makes the oxygen side of the molecule slightly more negative than the 

hydrogen side and creates an electric dipole moment P that points along the 

symmetry axis of the molecule as shown. 

If the water molecule is placed in an external electric field, it behaves as would be 

expected of the more abstract electric dipole of Fig. 22-8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now consider such an abstract dipole in a uniform external electric field, as shown in 

Fig. Assume that the dipole is a rigid structure that consists of two centers of opposite 

charge, each of magnitude q, separated by a distance d. The dipole moment P makes 

an angle theta with field E. 

a) An electric dipole in a uniform external electric field E:.Two centers of equal but 

opposite charge are separated by distance d. The line between them represents their 

rigid connection. (b) Field E: causes a torque t: on the dipole. The direction of t: is into 

the page, as represented by the symbol 
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Electrostatic forces act on the charged ends of the dipole. Because the electric field 

is uniform, those forces act in opposite directions (as shown in above Fig.) and 

with the same magnitude F=qE. Thus, because the field is uniform, the net force 

on the dipole from the field is zero and the center of mass of the dipole does not 

move. However, the forces on the charged ends do produce a net torque T on the 

dipole about its center of mass. 

The center of mass lies on the line connecting the charged ends, at some distance x 

from one end and thus a distance (d- x) from the other end. We know that (T= rF 

sinθ), we can write the magnitude of the net torque T as 

 

  

 

We can also write the magnitude of torque in terms of the magnitudes of the electric field E and 

the dipole moment p = qd. Therefore, we substitute qE for F and p/q for d in above Eq. to  find 

the magnitude of T,  

T = pE sinθ  

In vector form          T = p ×E 

 

The torque acting on the a dipole tends to rotate the dipole into the direction of 

field , thereby reducing θ. the rotation is clockwise. We can represent a torque that 

gives rise to a clockwise rotation by including a minus sign with the magnitude of 

the torque.  

 

T = - pE sinθ  
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Potential Energy of an Electric Dipole 

Potential energy can be associated with the orientation of an electric dipole in an electric field. 

The dipole has its least potential energy when it is in its equilibrium orientation, which is when 

its moment p is lined up with the field E (then T = P × E = 0). It has greater potential energy in 

all other orientations. 

The potential energy of an electric dipole in an external electric field is choose to be zero when 

the angle is 90°.We then can find the potential energy U of the dipole at any other value of θ 

with (delta U= - W) by calculating the work W done by the field on the dipole when the dipole is 

rotated to that value of θ from 90°.With the help of equation (W = ᶴ T dθ), We find that the 

potential energy U at any angle θ is 

 

 
After evaluating the integral 

 

We can generalize this equation to vector form as 

 

Potential energy of the dipole is least (U = -pE ) when θ = 0 (P and E are in the same direction); 

the potential energy is greatest when θ = 180° (p and E are in opposite directions). 

When a dipole rotates from an initial orientation θi to another orientation θf, the work done on the 

dipole by the electric field is 

 

where Uf and Ui are calculated with Eq. (U= - pE). If the change in orientation is caused by an 

applied torque (commonly said to be due to an external agent), then the work Wa done on the 

dipole by the applied torque is the negative of the work done on the dipole by the field; that is, 
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Flux 

 
Suppose that, airstream of uniform velocity v passing through at a small square loop of area A. 

Let Φ represent the volume flow rate (volume per unit time) at which air flows through the loop. 

This rate depends on the angle between v and the plane of the loop. If is perpendicular to the 

plane, the rate Φ is equal to vA. 

If v is parallel to the plane of the loop, no air moves through the loop, so Φ is zero. For an 

intermediate angle θ, the rate Φ depends on the component of v normal to the plane. Since that 

component is v cosθ, the rate of volume flow through the loop is 

 

This rate of flow through an area is an example of a flux—a volume flux in this situation. 

 

 

 
 

 

(a) A uniform airstream of velocity is perpendicular to the plane of a square loop of area A. 

(b) The component of v perpendicular to the plane of the loop is v cosθ, where θ is the angle 

between v and a normal to the plane. 

(c) The area vector A is perpendicular to the plane of the loop and makes an angle θ with v. 

(d) The velocity field intercepted by the area of the loop. 
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Area vector as being a vector whose magnitude is equal to an area (here the area of the loop) and 

whose direction is normal to the plane of the area as shown in fig c. 

The scalar (or dot) product of the velocity vector v of the airstream and the area vector A of the 

loop 

 
 

 

 

Flux of electric field 

Gaussian surface immersed in a nonuniform electric field. 

Let us divide the surface into small squares of area ΔA, each square being small enough to 

permit us to neglect any curvature and to consider the individual square to be flat. 

 ΔA is magnitude of each element of area with an area vector ΔA. Each vector is perpendicular 

to the Gaussian surface and directed away from the interior of the surface. 

Because the squares have been taken to be arbitrarily small, the electric field may be taken as 

constant over any given square. 

 The vectors ΔA and E for each square then make some angle θ with each other. Figure shows an 

enlarged view of three squares on the Gaussian surface and the angle θ for each. 

 

Flux of the electric field for the Gaussian surface  

   (1) 

For each square on the Gaussian surface, evaluate the scalar product E.ΔA for the two vectors E 

and ΔA and sum the results algebraically (that is, with signs included) for all the squares that 

make up the surface. The value of each scalar product (positive, negative, or zero) determines 

whether the flux through its square is positive, negative, or zero. 
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The exact definition of the flux of the electric field through a closed surface is found by allowing 

the area of the squares to become smaller and smaller, approaching a differential limit dA. The 

area vectors then approach a differential limit dA. The Eq. 1 becomes an integral: 

 

The integration is taken over the entire closed surface. The flux of the electric field is a scalar, 

and its SI unit is the N.m2/C. 

 

We can interpret the above Eq. in the following way:  

Squares like 1 in above Fig., in which points inward, make a negative contribution to the sum of 

Eq. 1. 

Squares like 2, in which E lies in the surface, make zero contribution. 

Squares like 3, in which E points outward, make a positive contribution. 
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First recall that we can use the density of electric field lines passing through an area as a 

proportional measure of the magnitude of the electric field there.  

Specifically, the magnitude E is proportional to the number of electric field lines per unit area. 

Thus, the scalar product E. ΔA is proportional to the number of electric field lines passing 

through area .Then, because the integration in Eq.1 is carried out over a Gaussian surface, which 

is closed, we see that 

The electric flux “through a Gaussian surface is proportional to the net number of electric field 

lines passing through that surface. 

 

Flux through a closed cylinder, uniform field 

A cylinder of radius R immersed in a uniform electric field E, with the cylinder axis parallel to 

the field. What is the flux of the electric field through this closed surface? 

 

 

 

 

 

We can do the integration by writing the flux as the sum of three terms:  integrals over the left 

cylinder cap a, the cylindrical surface b, and the right cap c 

 

For all points on the left cap, the angle between E and dA is 180° and the magnitude E of the 

field is uniform. Thus 

 



14 

 

 
where ∫dA gives the cap’s area A ( π R

2
). Similarly, for the right cap, where θ = 0 for all points, 

 
Finally, for the cylindrical surface, where the angle is 90° at all points, 

 

 
 

 
  

The net flux is zero because the field lines that represent the electric field all pass entirely 

through the Gaussian surface, from the left to the right. 

 

 

 

Gauss’ Law 

 

Gauss’ law is an expression of the general relationship between the net electric flux through a 

closed surface and the charge enclosed by the surface. The closed surface is often called a 

Gaussian surface.  

Gauss’ law relates the net flux Φ" of an electric field through a closed surface (a Gaussian 

surface) to the net charge qenc that is enclosed by that surface. It tells us that 

 

By definition of flux, we can also write Gauss’ law as 
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(a) A Gaussian cube with one edge on the x axis lies within a nonuniform electric field that 

depends on the value of x. (b) Each differential area element has an outward vector that is 

perpendicular to the area. (c) Right face: the x component of the field pierces the area and 
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produces positive (outward) flux. The y component does not pierce the area and thus does not 

produce any flux. (d) Left face: the x component of the field produces negative (inward) 

flux. (e) Top face: the y component of the field produces positive (outward) flux. 

Equations 1 and 2 hold only when the net charge is located in a vacuum or (what is the same for 

most practical purposes) in air. In Chapter 25, we modify Gauss’ law to include situations in 

which a material such as mica, oil, or glass is present. 

In Eqs. 1 and 2, the net charge qenc is the algebraic sum of all the enclosed positive and negative   

charges, and it can be positive, negative, or zero. We include the sign, rather than just use the 

magnitude of the enclosed charge, because the sign tells us something about the net flux through 

the Gaussian surface: 

If qenc is positive, the net flux is outward; if qenc is negative, the net flux is inward. Charge 

outside the surface, no matter how large or how close it may be, is not included in the term qenc 

in Gauss’ law. The exact form and location of the charges inside the Gaussian surface are also of 

no concern; the only things that matter on the right side of Eqs. 1 and 2 are the magnitude and 

sign of the net enclosed charge. 
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Gauss’ Law and Coulomb’s Law 

 
To derive Coulomb’s law from Gauss law and some symmetry considerations,  

 

Figure 1 shows a positive point charge q, around which we have drawn a concentric spherical 

Gaussian surface of radius r. Let us divide this surface into differential areas dA. By definition, 

the area vector dA at any point is perpendicular to the surface and directed outward from the 

interior. From the symmetry of the situation, we know that at any point the electric field is also 

perpendicular to the surface and directed outward from the interior. Thus, since the angle 

between E and dA is zero, we can rewrite Eq. 2 for Gauss’ law as 

 

Here qenc = q. Although E varies radially with distance from q, it has the same value everywhere 

on the spherical surface. Since the integral in Eq above is taken over that surface, E is a constant 

in the integration and can be brought out in front of the integral sign. That gives us  

 

 

The integral is now simply the sum of all the differential areas dA on the sphere and thus is just 

the surface area, 4πr
2
. Substituting this, we have 
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The same was found using Coulomb’s law. 

Applying Gauss’ Law: 

Cylindrical Symmetry 

Figure shows a section of an infinitely long cylindrical plastic rod with a uniform positive linear 

charge density λ. Let us find an expression for the magnitude of the electric field at a distance r 

from the axis of the rod.  

 

 

 
 

  

 

 

We conclude from this symmetry that the only uniquely specified direction in this problem is 

along a radial line. Thus, at every point on the cylindrical part of the Gaussian surface, E must 

have the same magnitude E and (for a positively charged rod) must be directed radially outward. 

Our Gaussian surface should match the symmetry of the 

problem, which is cylindrical. We choose a circular 

cylinder of radius r and length h, coaxial with the rod. 

Because the Gaussian surface must be closed, we include 

two end caps as part of the surface. 

Imagine now that, while you are not watching, someone 

rotates the plastic rod about its longitudinal axis or turns 

it ends for end. When you look again at the rod, you will 

not be able to detect any change. 
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Since 2πr is the cylinder’s circumference and h is its height, the area A of the cylindrical surface 

is 2πrh.The flux of E through this cylindrical surface is then 

 

 

 

There is no flux through the end caps because E, being radially directed, is parallel to the end 

caps at every point. 

The charge enclosed by the surface is λh, which means Gauss’ law, 

 

 

  
This is the electric field due to an infinitely long, straight line of charge, at a point that is a radial 

distance r from the line. The direction of E is radially outward from the line of charge if the 

charge is positive, and radially inward if it is negative. Equation also approximates the field of a 

finite line of charge at points that are not too near the ends (compared with the distance from the 

line). 

 

Applying Gauss’ Law: Planar Symmetry 

Non-conducting Sheet 

Figure shows a portion of a thin, infinite, non-conducting sheet with a uniform (positive) surface 

charge density σ. A sheet of thin plastic wrap, uniformly charged on one side, can serve as a 

simple model. Let us find the electric field a distance r in front of the sheet. 

A useful Gaussian surface is a closed cylinder with end caps of area A, arranged to pierce the 

sheet perpendicularly as shown. From symmetry, E must be perpendicular to the sheet and hence 
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to the end caps. Furthermore, since the charge is positive, E is directed away from the sheet, and 

thus the electric field lines pierce the two Gaussian end caps in an outward direction. Because the 

field lines do not pierce the curved surface, there is no flux through this portion of the Gaussian 

surface. Thus E dA is simply E dA; then Gauss’ law, 

 

 

 

 

 

where σA is the charge enclosed by the 

Gaussian surface. This gives 

 

  

 

Since we are considering an infinite sheet 

with uniform charge density, this result holds 

for any point at a finite distance from the 

sheet. 

 

(a) Perspective view and  (b) side view of a portion of a very large, thin plastic sheet, uniformly 

charged on one side to surface charge density σ. A closed cylindrical Gaussian surface passes 

through the sheet and is perpendicular to it. 
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Applying Gauss’ Law: Spherical Symmetry 

 

 

 

 

 

  

 (1)  

 

 

 

 

This field is the same as one set up by a point charge q at the center of the shell of charge. Thus, 

the force produced by a shell of charge q on a charged particle placed outside the shell is the 

same as the force produced by a point charge q located at the center of the shell. This proves the 

first shell theorem. 

Applying Gauss’ law to surface S1, for which r < R, leads directly to 

 E = 0   (2) 

Because this Gaussian surface encloses no charges. Thus, if a charged particle were enclosed by 

the shell, the shell would exert no net electrostatic force on the particle. This proves the second 

shell theorem 

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can be constructed 

with a nest of concentric spherical shells. For purposes of applying the two shell theorems, the 

 Figure shows a charged spherical shell of total charge q and 

radius R and two concentric spherical Gaussian surfaces, S1 

and S2. If we applied Gauss’ law to surface S2, for which r ≥ 

R, we would find that 

 

 A thin, uniformly charged, spherical shell with total charge q, 

in cross section. Two Gaussian surfaces S1 and S2 are also 

shown in cross section. Surface S2 encloses the shell, and S1 

encloses only the empty interior of the shell. 
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volume charge density ρ should have a single value for each shell but need not be the same from 

shell to shell. Thus, for the charge distribution as a whole, r can vary, but only with r, the radial 

distance from the center. We can then examine the effect of the charge distribution “shell by 

shell.” 

   

        

                                                        

  

                   

 

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r > R. The charge produces 

an electric field on the Gaussian surface as if the charge were a point charge located at the center, 

and Eq. 1 holds. 

 

Figure 23-19b shows a Gaussian surface with r < R. To find the electric field at points on this 

Gaussian surface, we consider two sets of charged shells—one set inside the Gaussian surface 

and one set outside. Equation 2 says that the charge lying outside the Gaussian surface does not 

set up a net electric field on the Gaussian surface. 

 Equation 1 says that the charge enclosed by the surface sets up an electric field as if that 

enclosed charge were concentrated at the center. Letting qʹ represent that enclosed charge, we 

can then rewrite Eq. 1 as 
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     (3) 

 

If the full charge q enclosed within radius R is uniform, then qʹ enclosed within radius r in Fig. b 

is proportional to q: 

 

  
 

 

    (4) 

 

 

         (5) 

 

 

 

 Put this value in eq. 3 

 

    (6)  


